International **IOR** Rectifier

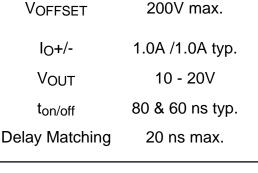
Data Sheet No.PD60217 Rev A

IR2011(S) & (PbF)

HIGH AND LOW SIDE DRIVER

Product Summary

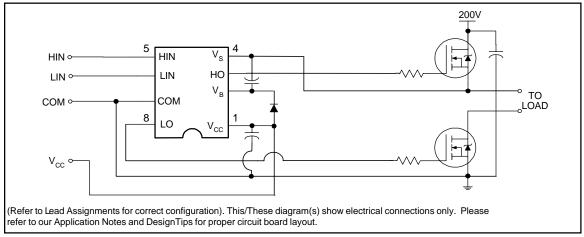
Features


- Floating channel designed for bootstrap operation Fully operational up to +200V
- Tolerant to negative transient voltage, dV/dt immune • Gate drive supply range from 10V to 20V
- Gate drive supply range from 10v to 20v
 Independent low and high side channels
- Independent low and high side
 Input logicHIN/LIN active high
- Undervoltage lockout for both channels
- 3.3V and 5V input logic compatible
- CMOS Schmitt-triggered inputs with pull-down
- Matched propagation delay for both channels
- 8-Lead SOIC is also available LEAD-FREE (PbF)

Applications

- Audio Class D amplifiers
- High power DC-DC SMPS converters
- Other high frequency applications

Description


The IR2011 is a high power, high speed power MOSFET driver with independent high and low side referenced output channels, ideal for Audio Class D and DC-DC converter applications. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.0V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET in the high side configuration which operates up to 200 volts. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.

Packages

Typical Connection

IR2011(S) & (PbF)

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units	
VB	High side floating supply voltage		-0.3	250		
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3		
VHO	High side floating output voltage		V _S - 0.3	V _B + 0.3		
V _{CC}	Low side fixed supply voltage		-0.3	25	V	
VLO	Low side output voltage		-0.3	V _{CC} +0.3		
V _{IN}	Logic input voltage (HIN & LIN)		COM -0.3	V _{CC} +0.3		
dV _s /dt	Allowable offset supply voltage transient (figure 2)		—	50	V/ns	
PD	Package power dissipation @ $T_A \le +25^{\circ}C$	(8-lead DIP)	—	1.0	14/	
		(8-lead SOIC)	—	0.625	W	
R _{THJA}	Thermal resistance, junction to ambient	(8-lead DIP)	—	125	°C/W	
		(8-lead SOIC)	—	200	C/VV	
TJ	Junction temperature		_	150		
Τs	Storage temperature		-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)		_	300		

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions. The VS and COM offset ratings are tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20	
VS	High side floating supply offset voltage	Note 1	200	
V _{HO}	High side floating output voltage	Vs	VB	
V _{CC}	Low side fixed supply voltage	10	20	
V _{LO}	Low side output voltage	0	Vcc	
V _{IN}	Logic input voltage (HIN & LIN)	СОМ	5.5	
TA	Ambient temperature	-40	125	

Note 1: Logic operational for V_S of -4 to +200V. Logic state held for V_S of -4V to -V_{BS}.

IR2011(S) & (PbF)

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000 pF, T_A = 25°C unless otherwise specified. Figure 1 shows the timing definitions.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	-	80	_		$V_{S} = 0V$
t _{off}	Turn-off propagation delay	-	75	—		V _S = 200V
tr	Turn-on rise time	-	35	50		
t _f	Turn-off fall time	-	20	35	ns	
DM1	Turn-on delay matching ton (H) - ton (L)	-	5	20		
DM2	Turn-off delay matching t _{off} (H) - t _{off} (L)	—	5	20		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM and are applicable to all logic input leads: HIN and LIN. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage	2.2	_	-	V	V _{CC} = 10V - 20V
VIL	Logic "0" input voltage	_	_	0.7		VCC = 10V - 20V
VOH	High level output voltage, V _{BIAS} - V _O	_	—	2.0		$I_{O} = 0A$
V _{OL}	Low level output voltage, VO	_	_	0.2	1	20mA
ILK	Offset supply leakage current	_	_	50		$V_B=V_S = 200V$
I _{QBS}	Quiescent V _{BS} supply current	_	90	210	μA	V _{IN} = 0V or 3.3V
lacc	Quiescent V _{CC} supply current	_	140	230		V _{IN} = 0V or 3.3V
I _{IN+}	Logic "1" input bias current	_	7.0	20	1	V _{IN} = 3.3V
I _{IN-}	Logic "0" input bias current	_	_	1.0		V _{IN} = 0V
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	8.2	9.0	9.8		
V _{BSUV-}	V _{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8.2	9.0	9.8		
V _{CCUV-}	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9.0		
I _{O+}	Output high short circuit pulsed current	-	1.0	-	A	V _O =0V, PW ≤ 10 µs
I _{O-}	Output low short circuit pulsed current	—	1.0	_		V _O = 15V, PW ≤ 10 µs